- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Aledhari, Mohammed (1)
-
Hefeida, Mohamed (1)
-
Joji, Shelby (1)
-
Saeed, Fahad (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pneumonia is a high mortality disease that kills 50, 000 people in the United States each year. Children under the age of 5 and older population over the age of 65 are susceptible to serious cases of pneumonia. The United States spend billions of dollars fighting pneumonia-related infections every year. Early detection and intervention are crucial in treating pneumonia related infections. Since chest x-ray is one of the simplest and cheapest methods to diagnose pneumonia, we propose a deep learning algorithm based on convolutional neural networks to identify and classify pneumonia cases from these images. For all three models implemented, we obtained varying classification results and accuracy. Based on the results, we obtained better prediction with average accuracy of (68%) and average specificity of (69%) in contrast to the current state-of-the-art accuracy that is (51%) using the Visual Geometry Group (VGG16 also called OxfordNet), which is a convolutional neural network architecture developed by the Visual Geometry Group of Oxford. By implementing more novel lung segmentation techniques, reducing over fitting, and adding more learning layers, the proposed model has the potential to predict at higher accuracy than human specialists and will help subsidies and reduce the cost of diagnosis across the globe.more » « less
An official website of the United States government
